INSTRUCTION MANUAL
AUTO RANGE DIGITAL MULTIMETER KEWTECH KT115

1. Safety Warnings

This instrument has been designed, manufactured and tested according to the following standards.
EC 61010-1 Over voltage CATIII 300V Pollution degree 2
EC 61010-2-031
IEC 61326
This instruction manual contains warnings and safety rules which must be observed by the user to ensure safe operation of the instrument and retain it in safe condition. Therefore, read through these operating instructions before using the instrument.

\triangle WARNING

```
Read through and understand instructions contained in this manual before starting using the instrument.
Save and keep the manual handy to enable quick reference whenever necessary.
- This instrument should only be used by suitably trained person and be sure to follow measurement procedures described in the manual. KEWTECH assumes no responsibility for damage and injury caused by misuse or not following instructions in the manual.
- Be sure to understand and follow all safety instructions contained in the manual.
Be sure to observe the above instructions.
Failure to follow the above instructions may cause injury, instrument damage and/or damage to equipment under test.
```

The symbol $\widehat{\Delta}$ indicated on the instrument means that the user must refer to related parts in the manual for safe operation of the instrument.
Be sure to carefully read the instructions following each \triangle symbol in the manual.
\triangle DANGER is reserved for conditions and actions that are likely to cause serious or fatal injury.
\triangle WARNING is reserved for conditions and actions that can cause serious or fatal injury.
\triangle CAUTION is reserved for conditions and actions that can cause injury or instrument damage.

\triangle DANGER

- Never make measurement on the circuit in which electrical potential to ground over 300V AC/DC exists.

Do not attempt to make measurement in the presence of flammable gasses. Otherwise, the use of the instrument may cause sparking, which can lead to an explosion.

- Be sure to keep your fingers behind the Finger barrier part of test lead.

Never attempt to use the instrument if its surface or your hand is wet.
Do not open the battery cover and the instrument case when making measurement.

[^0]
\triangle CAUTION

Always make sure to check Function switch is setting to the appropriate range before starting measurement
Do not expose the instrument to the direct sun, high temperature and humidity or dewfall.

- When the instrument will note be in use for a long period, place it in storage after removing the batteries.
- Use a cloth dipped in water or neutral detergent for cleaning the instrument. Do not use abrasives or solvents.

Allowable measurement time at 10A range of current function is 15seconds. If you carry on making measurement continuously over 15 seconds, it can cause instrument damage.

2. Features

This instrument, KT115, is a Digital Multimeter which designed for making measurement of the low-voltage equipment.
(1) Designed to international safety standards.
IEC 61010-1 overvoltage CAT. III 300 V Pollution degree 2
IEC 61010-2-031 (Requirements for the hand-held probe)
(2) REL function to check the difference of measured values
(3) Auto power off function to save battery consumption
(4) Data hold function
(5) Diode and Continuity check function
(6) Auto-ranging function
(7) Frequency measurement function
(8) DUTY measurement function
(Express Pulse width / Pulse period as a percentage)
(9) Current function is protected by fuse
(10) Instrument is protected from mechanical shock by holster.

3. Specification

- Measuring ranges and accuracy ($23 \pm 5^{\circ} \mathrm{C}$, under the $45 \% \sim 75 \% \mathrm{RH}$)

Ranges		Measuring range	Accuracy
D C V	400 m V	$\begin{gathered} 0 \sim 600 \mathrm{~V} \\ \text { (5 Autoranging) } \\ \text { Input impedance approx. } 10 \mathrm{M} \Omega \end{gathered}$	$\pm 0.6 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$
	4 V		
	40 V		
	400 V		
	600 V		$\pm 1.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$
A C V	400 mV	$\begin{gathered} 20 \sim 399.9 \mathrm{mV} \\ \text { Input impedance approx. } 10 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & \pm 1.6 \% \text { rdg } \pm 4 \mathrm{dgt}(50 / 60 \mathrm{~Hz}) \\ & \pm 2.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}(\sim 400 \mathrm{~Hz}) \end{aligned}$
	4 V	$\begin{gathered} 0 \sim 600 \mathrm{~V} \\ \text { (4 Autoranging) } \\ \text { Input impedance approx. } 10 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} & \pm 1.3 \% \text { rdg } \pm 4 \mathrm{dgt}(50 / 60 \mathrm{~Hz}) \\ & \pm 1.7 \% \mathrm{rdq} \pm 4 \mathrm{dat}(\sim 400 \mathrm{~Hz}) \end{aligned}$
	400 V		$\pm 1.6 \% \text { rdg } \pm 4 \mathrm{dgt}(50 / 60 \mathrm{~Hz})$
	600 V		$\pm 2.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}(\sim 400 \mathrm{~Hz})$
DCA	400 u A	$\begin{gathered} 0 \sim 4000 \mathrm{uA} \\ \text { (2 Autoranging) } \end{gathered}$	$\pm 2.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$
	40 m A	$\begin{gathered} 0 \sim 400 \mathrm{~mA} \\ (2 \text { Autoranging) } \end{gathered}$	$\pm 1.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$

	D C A	4 A	$\begin{gathered} 0 \sim 10 \mathrm{~A} \\ \text { (2 Autoranging) } \end{gathered}$	$\pm 1.6 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$	
		10 A	Allowable measurement time : 10A(15seconds max)		
	ACA	400 u A	$\begin{aligned} & \text { 0~4000uA } \\ & \text { (2 Autoranging) } \end{aligned}$	$\pm 2.6 \% \mathrm{rdg} \pm 4 \mathrm{dgt}(50 / 60 \mathrm{~Hz})$	
		4000 u A			
		40 m A	$0 \sim 400 \mathrm{~mA}$	$\begin{aligned} & \pm 2.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}(50 / 60 \mathrm{~Hz}) \\ & \pm 2.4 \% \mathrm{rdg} \pm 4 \mathrm{dgt}(\sim 400 \mathrm{~Hz}) \end{aligned}$	
		400 m A	0~10A (2 Autoranging)		
		4 A			
		10 A			
			Allowable measurement time : 10A(15seconds max)		
Ω	Resistance	400Ω	$0 \sim 40 \mathrm{M} \Omega$ (6 Autoranging)	$\pm 1.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$	
		$4 \mathrm{k} \Omega$			
		40 k ת			
		$400 \mathrm{k} \Omega$			
		$4 \mathrm{M} \Omega$			
		$40 \mathrm{M} \Omega$		$\pm 2.0 \% \mathrm{rdg} \pm 4 \mathrm{dgt}$	
	Diode check		Test current approx. 0.4 mA	Unspecified	
	Continuity check			Buzzer beeps below about 70Ω	
	Capacity	40 n F	~100uF (5 Autoranging)	$\pm 3.5 \%$ rdg $\pm 10 \mathrm{dgt}$	
		400 n F		$\pm 3.0 \% \mathrm{rdg} \pm 5 \mathrm{dgt}$	
		4 uF			
		40 u F		$\pm 3.5 \% \mathrm{rdg} \pm 5 \mathrm{dgt}$	
		100u F			
Frequency		5.12 Hz	$\begin{gathered} \sim 10 \mathrm{MHz} \\ \text { (8 Autoranging) } \\ \text { Input sensitivity: } \\ \sim 1 \mathrm{MHz} \text { / more than } 1.5 \mathrm{~V}(\mathrm{RMS} \text {.) } \\ \text { over } 1 \mathrm{MHz} / \\ \text { more than } 2 \mathrm{~V}(\mathrm{RMS} \text {.) } \end{gathered}$	$\pm 0.1 \% \mathrm{rdg} \pm 5 \mathrm{dgt}$	
		$\frac{51.2 \mathrm{H} \mathrm{z}}{512 \mathrm{H} \mathrm{z}}$			
		5.12 k H z			
		51.2 k Hz			
		512 k H z			
		5.12 MH z			
		10 MHz			
		D U T Y	$\begin{gathered} 0.1 \sim 99.9 \% \\ \text { (Pulse width / Pulse period) } \end{gathered}$	$\pm 2.5 \% \mathrm{rdg} \pm 5 \mathrm{dgt}$	

- Standards

Mode of operation

- Indication

Over range display

- Auto-ranging
- Sampling rate

IEC61010-1 Overvoltage CAT III 300V, pollution degree 2 / Overvoltage CAT II 600V, pollution degree 2

IEC61010-2-031

IEC61326

$\triangle \Sigma$ mode

LCD maximum value 3999 (ACV/A, DCV/A, $\Omega, F)$ / maximum value $5119(\mathrm{~Hz})$ / units, symbols
"OL" symbol is displayed on the LCD.
In case that the value is beyond effective measuring range at the position of Ω function range and manual range.
Range shifts to upper range when indicated value is more than 3999.
Range shifts to lower range when indicated value is less than 360.
approx. 400 mS

- Temperature \& Humidity range
(guaranteed accuracy)
Operating Temperature \&
Humidity range
- Storage Temperature \& Humidity range
- Insulation Resistance

Withstand Voltage
Overload Protection

- Dimensions / Weight
- Power source
- Accessories

Fuse
$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Relative humidity: less than 75%
$0^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ Relative humidity: less than 80%
$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$ Relative humidity: less than 70%
It should be more than $10 \mathrm{M} \Omega / \mathrm{DC} 1000 \mathrm{~V}$ between electrical circuit and enclosures.
It should be more than AC3700V/ for one minute between electrical circuit and enclosures.
Voltage function : 400 mV range : 250 V (RMS.) 10 seconds
except for 400 mV range : 600 V (RMS.) 10 seconds
Resistance function
Capacity function 250V (RMS.) 10seconds

Frequency function (RMS.) 10seconds
Current function: uA, mA \quad : Protected by 250V0.5A fuse
A : Protected by 250V10A fuse
approx. $155(\mathrm{~L}) \times 75(\mathrm{~W}) \times 33(\mathrm{D}) \mathrm{mm} /$ approx. 260 g (including batteries)
Two R6P(AA) 1.5 V or equivalent
Test lead 1set / R6P (AA) 2p.c.s / Holster 1 /Instruction manual 1
F 250V/500mA(fast acting type), $\phi 5.2 \times 20 \mathrm{~mm} / \mathrm{F} 250 \mathrm{~V} / 10 \mathrm{~A}$ (fast acting type), $\phi 6.3 \times 25 \mathrm{~mm}$

\triangle CAUTION

The voltage shown above is the overload protection (overvoltage protection) for the instrument.
Make sure not to exceed the value of voltage shown above.

4. Instrument Layout

(1) Function Selector Switch	(2)Display
(3) RESET Key	(4) SELECT Key
(5) RANGE Key	(6) REL Key
(7) HOLD Key	(8) Hz/DUTY Key
(9) Measuring terminal $(\mathrm{V} / \Omega / \mathrm{Hz})$	(10 Measuring terminal (COM)
(11) Measuring terminal (mA)	(12)Measuring terminal (A)
(13) Test Leads	(14) Holster

5. Preparation

5-1 Checking Battery Voltage
Set the Function Selector Switch to other positions except the OFF position
Battery Voltage is enough if indication is clear and symbol is not indicated in this bout.
If
Replacement procedures shown in item8 in this document and replace with new batteries.

6. Measurements

6-1 Voltage Measurement (DCV, ACV)

©DANGER

- To avoid the danger of getting electrical shock, never make measurement on a circuit over 600V AC/DC. (electrical potential to ground 300V AC/DC)

Do not operate Function Selector Switch during measurement.
Do not make measurement when opening the battery cover and the instrument case.
6-1-1 DC Voltage Measurement (DCV)
(1) Insert the black test lead plug into the COM terminal and the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal
(2) Set the Function Selector Switch to " $\overline{\overline{\mathbf{V}}}$ " position.(Then, "AUTO" and "mV" symbols are indicated on the display.)
(3) Connect the black test lead to the negative side of the circuit under the test and the red test lead to the positive side of the circuit, then the measured value is indicated on the display. If you connect the test leads the other way, " - " symbol is indicated on the display.
6-1-2 AC Voltage Measurement (ACV)
(1) Insert the black test lead plug into the COM terminal and the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal.
(2) Set the Function Selector Switch to " $\widetilde{\mathbf{V}}$ " position.(Then, "AC", "AUTO", and "V" symbols are indicated on the display.)
(3) Connect the test leads to the circuit under test. Measured value is indicated on the display.
Note) When you make measurement of the voltage less than 20 mV at the AC 400 mV range, the measurement value cannot be indicated correctly
Even if short-circuit the input line at the range of AC4V, 1~3dgt may remain indicated.
In that case, by pressing REL key, " 0 " will be indicated.
6-2 Current Measurement (DCA/ACA)

Do not apply voltage to the current measuring terminals.

- To avoid the danger of getting electrical shock, never make measurement on a circuit over 300V AC/DC. (electrical potential to ground 300V AC/DC)
- Do not operate Function Selector Switch during measurement.

Do not make measurement when opening the battery cover and the instrument case.
6-2-1 DC Current Measurement (up to 400 mA)
(1) Insert the black test lead plug into the COM terminal and the red test lead plug into the mA terminal.
(2) Set the Function Selector Switch to the appropriate "uA" or "mA" position.

In case that the measurement current is 3999 uA or less, set the Function Selector Switch to "uA" position, and it is 399.9 mA or less, set the Function Selector Switch to "mA" position.(Then, "AUTO", and "uA"or "mA" symbols are indicated on the display.)
(3) Power off the circuit under test.
(4) Connect the black test lead to the negative side of the circuit under the test and the red test lead to the positive side of the circuit so the instrument is in the series with the circuit.
(5) Power on the circuit under test.
(6) Measured value is indicated on the display.

If you connect the test leads the other polarity, " - " symbol is indicated on the display.
6-2-2 DC Current Measurement (up to 10A)

\triangle CAUTION

Allowable measurement time at 10A range of current function is 15 seconds.
If you carry on making measurement continuously over 15 seconds, it can cause error of measurement and instrument damage.
(1) Insert the black test lead plug into COM terminal and the red test lead plug into the A terminal.
(2) Set the Function Selector Switch to the "A" position.(Then, "AUTO", and "A" symbols are indicated on the display.)
(3) Power off the circuit under test.
(4) Connect the black test lead to the negative side of the circuit under the test and the red test lead to the positive side of the circuit so the instrument is in the series with the circuit.
(5) Power on the circuit under test.
(6) Measured value is indicated on the display.

If you connect the test leads the other polarity, " - " symbol is indicated on the display.
6-2-3 AC Current Measurement (up to 400 mA)
(1) Insert the black test lead plug into the COM terminal the red test lead plug into the mA terminal.
(2) Set the Function Selector Switch to the appropriate "uA" or "mA" position

In the case of the measurement current is 3999 uA or less, set the Function Selector Switch to "uA" position, and it is 399.9 mA or less, set the Function Selector Switch to "mA" position.(Then, "AUTO", and "uA"(or "mA") symbols are indicated on the display.)
(3) Set the instrument to AC mode by pressing SELECT Key.(Then, "AC" symbol is indicated on the display.)
(4) Power off the circuit under test.
(5) Connect the test leads to the circuit under test so the instrument is in the series.
(6) Power on the circuit under test.
(7) Measured value is indicated on the display.

6-2-4 AC Current Measurement (up to 10A)

\triangle CAUTION

- Allowable measurement time at 10A range of current function is 15 seconds.

If you carry on making measurement continuously over 15seconds, it can cause error of measurement and instrument damage.
(1) Insert the black test lead plug into the COM terminal and the red test lead plug into the A terminal.
(2) Set the Function Selector Switch to "A" position.(Then, "AUTO" and "A" symbols are indicated on the display.)
(3) Set the instrument to AC mode by pressing SELECT Key.(Then, "AC" symbol is indicated on the display.)
(4) Power off the circuit under test.
(5) Connect the test leads to the circuit under test so the instrument is in the series
(6) Power on the circuit under test.
(7) Measured value is indicated on the display.

6-3 Resistance Measurement (Ω / Diode check/ Continuity Check)

\triangle DENGER

To avoid the danger of getting electrical shock, never make measurement of the circuit in which electric potential exists.
Do not make measurement when opening the battery cover and the instrument case.
6-3-1 Resistance Measurement
(1) Insert the black test lead plug into the COM terminal and the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal.
(2) Set the Function Selector Switch to " Ω " position. (Then, "AUTO" and "M Ω " symbols are indicated on the display.)

Make sure that the "O.L" symbol is indicated on the display at this bout, then short the test lead tips and check " 0 " is indicated on the display.
(3) Connect the test leads to both ends of the resistance under test.

Measured value is indicated on the display.
Note) Even if short the test lead tips, indicated value may not be " 0 ". But this is because of the resistance of test leads and not a failure.
In that case, by pressing REL key, " 0 " will be indicated.
6-3-2 Diode Check
(1) Insert the black test lead plug into the COM terminal the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal.
(2) Set the Function Selector Switch to " Ω " position.(Then, "AUTO" and "M Ω " symbols are indicated on the display.)
(3) Press the SELECT Key one time and set the instrument to Diode Check mode.
(Then, " $\rightarrow+$ " and " V " symbols are indicated on the display.)
Make sure that the ".OL" symbol is indicated on the display at this bout, then short the test lead tips and check " 0 " is indicated on the display.
(4) Connect the black test lead to the cathode side of the Diode and the red test lead to the anode side of the Diode.

Forward voltage of Diode is indicated on the display.
(5) Connect the black test lead to the anode side of the Diode and the red test lead to the cathode side of the Diode.

Normally, ".OL" symbol is indicated on the display.
Conclusion : Diode is OK if the instrument complies with above items(3) and (4).
Note) Open-circuit voltage between measuring terminals is approx.1.5V.(measuring current approx. 0.4 mA)
6-3-3 Continuity Check
(1) Insert the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal and the black test lead plug into COM terminal.
(2) Set the Function Selector Switch to " Ω " position.(Then, "AUTO" and "M Ω " symbols are indicated on the display.)
(3) Press the SELECT Key twice and set the instrument to Continuity Check mode.
(Then, " \quad) " " and " Ω " symbols are indicated on the display.)
Make sure that the "OL." symbol is indicated on the display at this bout, then short the test lead tips and check " 0 " is indicated on the display and check if the buzzer beeps.
(4) Connect the test leads to both ends of the resistance under test.

Measured value is indicated on the display. The buzzer beeps below about 70Ω.
Note) Even if short the test lead tips, indicated value may not be " 0 ". But this is because of the resistance of test leads and not a failure. In that case, by pressing REL key, "0" will be indicated.

\triangle DANGER

To avoid the danger of getting electrical shock, never make measurement of the circuit in which electric potential exists.
Do not make measurement when opening the battery cover and the instrument case.
Make sure to discharge the capacitor before making measurement.
(1) Insert the black test lead plug into the COM terminal and the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal.
(2) Set the Function Selector Switch to " $\dashv \vdash$ " position.(Then, "AUTO" and " nF " symbols are indicated on the display.)
(3) Press the REL key and " 0 " shall be indicated.(Then, "REL \triangle " symbol is indicated on the display.)
(4) Connect the test leads to both ends of the resistance under test.

Measured value is indicated on the display.
Measuring unit " nF " / "uF" is automatically chosen and indicated due to the measured value.
Note) It may take some time according to the measuring capacitance.
Measuring capacitance $<4 \mathrm{uF}$ \qquad Measuring time is about 2seconds
Measuring capacitance < 40uFMeasuring time is about 7seconds
Measuring capacitance <100 uF \qquad Measuring time is about 15 seconds

6-5 Frequency Measurement

To avoid the danger of getting electrical shocks, never make measurement on a circuit over 300V AC/DC. (electrical potential to ground 300V AC/DC)
Do not operate Function Selector Switch during measurement.
Do not make measurement when opening the battery cover and the instrument case.
(1) Insert the black test lead plug into COM terminal and the red test lead plug into the $\mathrm{V} \Omega \mathrm{Hz}$ terminal.
(2) Set the Function Selector Switch to "Hz" position. (Then, "Hz" symbol is indicated on the display.)
(3) Connect the test leads to the circuit under test.

Measured value is indicated on the display.
Frequency can be measured at ACV, DCV, ACA and DCA functions by pressing "Hz/DUTY" Switch. Concerning with the direction for use of "Hz/ DUTY" Switch, please reference to the item7-6 Hz/DUTY in this document.
Note) The minimum input can be measured is approx. 1.5 V .

7. How to use Function Switches

7-1 SELECT Key

This key is to chose the measuring function at Ω / Diode Check/ Continuity function and Current function(uA, mA, A). Actions at each function are as below.
Ω / Diode Check/ Continuity function
When setting the instrument to " Ω / Diode Check/ Continuity" function, " Ω "measuring mode has been selected in the initial condition. By pressing "SELECT" Key, measuring mode changes.
$" \Omega " \rightarrow$ "Diode Check" \rightarrow "Continuity Check"
Current function (uA, mA, A)
When setting the instrument to any function of the "uA", "mA", and "A", DC Current Measuring mode has been selected in the initial condition.
By pressing "SELECT" Key, measuring mode changes.

$$
\text { "DC" } \rightarrow \text { "AC" }
$$

7-2 RESET Key

By pressing "RESET" Key, all functions can be reset to their initial conditions.
Range setting, Mode setting and Data hold are all released and every function is back to its initial condition.

7-3 RANGE Key

At each "ACV", "DCV", " Ω ", "uA", "mA" and "A" function, setting for the measuring ranges can be done manually by pressing "RANGE" Key. ("AUTO" symbol disappears from the display.)
Every time when pressing "RANGE" Key, range moves.
In order to change from manual mode to Auto-ranging, there are following 3ways.

1) Press "RANGE" Key for 2seconds
2) Change to the other functions.
3) Press "RESET" Key

7-4 REL Key

The difference between measured values can be indicated on the display at each "ACV", "DCV", " Ω ", "Capacitance", "ACA" and "DCA" function. When pressing "REL" Key, "REL \triangle "symbol lights up and the value under measuring is stored.
After that, the difference between stored value and measuring value is indicated on the display.
It can be released by pressing the "REL" Key again, changing to the other functions or pressing the "RESET" Key.

7-5 HOLD Key

The measured value can be hold at all functions.
By pressing "HOLD" Key, "H" symbol indicated on the display and the indicated value can be held.
By pressing "HOLD" Key again, "H" symbol disappears from the display and held data is released.

7-6 Hz/DUTY Key

Making measurement for frequency of input signal and DUTY(Pulse width / Pulse period).
(1) Change from normal measurement to "Frequency Measurement" and "DUTY Measurement".

Every time when pressing "Hz/DUTY" Key, it changes in the following sequence from normal measurement.
"Frequency" \rightarrow "DUTY" \rightarrow "Normal measurement"
(2) Change Frequency and DUTY at "Hz/DUTY" function.

By pressing "Hz/DUTY" Key, it changes in the sequence : "Frequency" \rightarrow "DUTY".

8. Auto Power Off

Auto power off function operates when about 30minutes passed after power on this instrument.
When Auto power off function operates and the instrument powered off, the power-off statue returns to normal by pressing any key.
And it is possible to release the Auto power off function.
Turn the function switch from OFF position to the function you want with pressing SELECT key, and power on the instrument.

9. Battery \& Fuse Replacement

\triangle DANGER

- Never open the battery cover and the instrument case when making measurement.

To avoid getting electrical shock, be sure to remove test leads from the instrument when opening the battery cover in order to replace batteries and fuses.

9-1 Battery replacement

(1) Remove test leads from the instrument.
(2) Remove the holster from the instrument.
(3) Loosen one screw on the bottom of the Instrument and open the battery Cover then replace batteries.

9-2 Fuse replacement
(1) Remove test leads from the instrument.
(2) Remove the holster from the instrument.
(3) Loosen two screws on the bottom of the instrument and open the battery cover, then replace fuses.

10. Maintenance

Use a cloth dipped in water or neutral detergent for cleaning the instrument. Do not use abrasives or solvents.

[^0]: ## \triangle WARNING

 - Never attempt to make any measurement if any abnormal conditions are noted, such as broken case, cracked test leads and exposed metal parts.

 Do not turn the function selector switch with test leads connected to the instrument.

 - Do not install substitute parts or make any modification to the instrument.

 Do not try to replace the batteries if the surface of the instrument is wet.
 Make sure to disconnect test leads from the device under test when opening the Battery cover for battery replacement.

